Telegram Group & Telegram Channel
Problem: Let A be an unsorted array of n floating numbers. Propose an O(n) time algorithm to compute the (floating-point) number x (not necessarily an element of A) for which max|A[i] - x| is as small as possible for all 1 <= i <= n. (Here |y| means absolute value of y)

Solution: The problem statement can be interpreted as finding a point x such that it's distance from the farthest point is minimized (since, |A[i] - x| is given which is actually distance between two point). Note: we don't need to minimize distance from every point, we just need to minimize the distance of the point which is farthest to it. So we try to put our x as close to the farthest point. But in doing so the point which is near may go far. So the optimal solution is finding the minimum point in the array A (let it be named MN) and finding the maximum point of A (let it be named MX) and the result is the mid-point of these two points, i.e x=(MN+MX)/2. Note: All other point between MN and MX will have distance lesser hence we do not bother it. We could not get more optimal point than this one. Now, MX and MN can be easily determined by travelling once the array. Hence the time complexity is O(n).



Happy Coding!!!



tg-me.com/Competitive_Programming_Cpp/42
Create:
Last Update:

Problem: Let A be an unsorted array of n floating numbers. Propose an O(n) time algorithm to compute the (floating-point) number x (not necessarily an element of A) for which max|A[i] - x| is as small as possible for all 1 <= i <= n. (Here |y| means absolute value of y)

Solution: The problem statement can be interpreted as finding a point x such that it's distance from the farthest point is minimized (since, |A[i] - x| is given which is actually distance between two point). Note: we don't need to minimize distance from every point, we just need to minimize the distance of the point which is farthest to it. So we try to put our x as close to the farthest point. But in doing so the point which is near may go far. So the optimal solution is finding the minimum point in the array A (let it be named MN) and finding the maximum point of A (let it be named MX) and the result is the mid-point of these two points, i.e x=(MN+MX)/2. Note: All other point between MN and MX will have distance lesser hence we do not bother it. We could not get more optimal point than this one. Now, MX and MN can be easily determined by travelling once the array. Hence the time complexity is O(n).



Happy Coding!!!

BY Competitive Programming


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Competitive_Programming_Cpp/42

View MORE
Open in Telegram


Competitive Programming Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Competitive Programming from no


Telegram Competitive Programming
FROM USA